Operation
❯
Predictive Maintenance
❯Manufacturing and Factories – Predictive Maintenance
Deep learning technology combined with topological data analysis successfully estimates degree of internal damage to bridge infrastructure
Large Companies
Knowledge representation - Bayesian Network
Predictive maintenance of public housing lifts
Product failure prediction for critical IT infrastructure
Automated defect classification on product surfaces
Analysing and predicting acid treatment effectiveness on bottom hole zone
Machine learning-driven approach to identify weak spots in the manufacturing of circuit breakers.
Active antenna array satellite
Intelligent technology to control manual operations via video Norma
Jet engine predictive maintenance service
Carrier interference detection and removal for satellite communication
Large Companies
Manufacturing and Factories – Predictive Maintenance
Solution to detect signs of failures in wind power generation system
Machine learning-driven analysis of batch process operation data to identify causes of poor batch performance
Large Companies
Manufacturing and Factories – Predictive Maintenance
For:
Operation, R&DGoal:
Anticipate Risks, Improve Operation EfficiencyProblem addressed
Within manufacturing an ‘unplanned shutdown’, due to asset failure, is unacceptable. And two potential approaches to deal with this situation are: -
Reactive Maintenance: Not Scheduled – targeted replacement of parts in response only to their failure. Occurs during the subsequent unplanned shutdown.
Inefficient (need stock of replacement parts, costly line stoppages).
Preventative Maintenance: Scheduled – bulk replacement of parts, which are within a margin of their end of useful life. Performed at set intervals during planned shutdown.
Inefficient (all service parts replaced, some still useable).
“Users require timely notification of the potential failure of an asset. Allowing maintenance to be performed, at a time convenient to operations, before the failure occurs.”
Scope of use case
Avoiding unplanned shutdowns in Manufacturing using Machine Learning to predict failure states in equipment.
Description
Predictive Maintenance: sensors, applicable to condition monitoring (e.g., temp, pressure & vibration) are mounted on the asset. An ‘Internet of Things’ type set up provides for highest levels of functionality. The DataStream from said sensors allows capture & storage of an asset’s state, in real time.
Predictive Analytics, i.e., Machine/Deep Learning Algorithms applied to the data detects the minutiae present during the transition from the Normal State, into a Failure State and allows predictions identifying the failing subsystem and ‘Time till Failure’. Before o deployment, these algorithms require training with a mixture of data, between the Normal & Failure states. A technique known as ‘anomaly detection’; in which novel data, not being outliers, allows classification between Good/No-Good.
By detecting the assets degradation into a failure condition, before it occurs, users can plan for targeted part replacement at an appropriately scheduled downtime.
Common challenges: Issues associated with appropriate sensor availability, employee knowledge/training and data quality.
Sensor Network - IOT
AI: Perceive
Deep Learning
Machine Learning
AI: Understand
Detect Anomaly & Fraud
Predict / Forecast
AI: Act