cyberquantic logo header
EN-language img
FR-language img
breadcrumbs icon
Listen

Sensor Network - IOT

Reducing Food Recalls With AI-Dri

Product Design Using AI
For:
Design Engineers, Product Development Team
Goal:
Improved Product Development / R&D
Large Companies
Knowledge representation - Bayesian Network
For:
Process Engineers.
Scope:
Applying Bayesian Networks to root cause analysis of industrial processes.
Goal:
Improve Operation Efficiency
AI-dispatcher (operator) of large-scale distributed energy system infrastructure
For:
Energy companies focused on AI solutions to drive energy production, transition and distribution in large territories
Scope:
Monitoring, optimization and control of large-scale distributed energy systems using deep reinforcement learning (gas, oil, power, heat, and water transmission and distribution infrastructure systems).
Goal:
Improve Operation Efficiency, Increase Revenues, Reduce costs
Large Companies
Operations - Intelligent Monitoring of Infrastructures
For:
Plant Operators
Scope:
Optimization of thermal efficiency of a power plant using Machine Learning.
Goal:
Improve Operation Efficiency, Improved Employee Efficiency, Reduce costs
Reducing Food Recalls With AI-Dri
For:
Food Companies, Retail Stores, Restaurants
Goal:
Anticipate Risks, Improve Operation Efficiency
Predictive analytics for the behaviour and psycho-emotional conditions of eSports players using heterogeneous data and artificial intelligence
For:
End users
Scope:
Prediction of psycho-emotional conditions of eSports players. To form predictions, we collect physiological data from wearables/video cameras/eye trackers, game telemetry data from keyboard/mouse/demo files, and environmental conditions followed by the application of machine learning methods for the analysis of the collected data.
Goal:
Other
Robot consciousness
Scope:
A robot for museum tours equipped with the main capabilities of functional consciousness, accepted by and transparent to untrained users.
Goal:
Other
Ontologies for smart buildings
For:
Those that can affect the AI system: since it is under the supervision of a university, the data exchange with the building is controlled by the networking team of the university and the person in charge of the security. A university network is not so open! It is not like the Internet that individuals can publicly access. A group of persons in charge of the GDPR would also be deployed during the use case.
Scope:
Renovation of a building, improvement of the quality of life of the residents (limited to data issues in the building), audience: citizens, public and private actors, companies involved in the ICT system managing the building. The scope is not limited to the building management system (BMS). We would like to open it to data produced by residents, coupled with data coming from the BMS.
Goal:
Other
Unmanned protective vehicle for road works on motorways
Scope:
Unmanned operation of a protective vehicle in order to reduce the risk for road workers in short-term and mobile road works carried out in moving traffic.
Goal:
Other
AI components for vehicle platooning on public roads
Scope:
Trains of vehicles that drive very close to each other at nearly equal speed (platoons) on public roads, in particular platooning trucks on motorways.
Goal:
Improve Operation Efficiency
Use of robotic solution for traffic policing and control
Scope:
Robotics-based traffic policing system.
Goal:
Other
Behavioural and sentiment analytics
For:
Organizations, end users, community
Scope:
Ascertain a person's emotional state and goal from their gestures, facial expression, and actions.
Goal:
Improve Operation Efficiency
From Weeks Down to Hours: How insurers innovate with AI to shorten claims processing time and improve customer experience
For:
- Claims Management - Customer Experience.
Goal:
Improved Customer Experience
AI (swarm intelligence) solution for attack detection in IoT environment
For:
End users of smart metering, utility companies
Scope:
Anomaly-based attack detection in an IoT environment using swarm Intelligence.
Goal:
Other
Robotic solution for replacing human labour in hazardous conditions
Scope:
Building an AI-based robotics solution for replacing human labour in hazardous conditions.
Goal:
Other
Animal Disease Detection
For:
Dairy Farmers, Factory Farmers
Goal:
Anticipate Risks
Ecosystems management from causal relation inference from observational data
For:
Environment, ecosystem
Scope:
Infer important latent variables to control a whole ecosystem using a database including human observation and sensor data.
Goal:
Improved Product Development / R&D, Improve Operation Efficiency
Weather Forecasting in Agriculture
For:
Farmers
Goal:
Anticipate Risks, Improve Operation Efficiency
Robotic vision scene awareness
For:
Customers, 3 rd parties, end users, community
Scope:
Determining the environment the robot is in and which actions are available to it.
Goal:
Improve Operation Efficiency
AI to understand adulteration in commonly used food items
For:
Consumers, farmers, health monitoring agencies
Scope:
Understand the patterns in hyperspectral / near infrared (NIR) or visual imaging specifically for adulteration in milk, bananas and mangoes.
Goal:
Improve Operation Efficiency
AI based text to speech services with personal voices for people with speech impairments
For:
People with speech impairments
Scope:
All people who have some sort of speech impairment including but not limited to three basic types: articulation disorders, fluency disorders, and voice disorders.
Goal:
Improved Customer Experience
Large Companies
Manufacturing and Factories – Predictive Maintenance
For:
Operation, R&D
Scope:
Avoiding unplanned shutdowns in Manufacturing using Machine Learning to predict failure states in equipment.
Goal:
Anticipate Risks, Improve Operation Efficiency
Self-driving aircraft towing vehicle
Scope:
Self-Driving towing vehicle for aircrafts, operating on an airfield autonomously.
Goal:
Improve Operation Efficiency
Improving productivity for warehouse operation
For:
Warehouse manager
Scope:
Big data analysis for enhancing productivity.
Goal:
Other

Reducing Food Recalls With AI-Dri

For:
Food Companies, Retail Stores, Restaurants
Goal:
Anticipate Risks, Improve Operation Efficiency
Problem addressed
A study found that a food recall caused by bacterial or microbiological contamination typically costs US$10 million. The present issue is that problems with food safety frequently surface after the products have already been shipped, marketed, or in some cases ingested. 
Food recalls that follow have a negative impact on both the economy and reputation. Currently, data generated by food processing equipment must occasionally be interpreted by people. To decrease the incidence of foodborne illness in its operations, the food sector needs a data-driven approach.
Description
As anticipating food quality is essential for upholding high standards for food safety, AI-based systems have been widely used in food safety applications.
A system for forecasting changes in food conditions has been developed using artificial intelligence and deep learning. It makes use of a wireless frequency-powered detecting mode. 
In this system, the radio frequency power at 915 MHz is applied to detect the gas and moisture conditions. Gathered data on gas composition and moisture is used in the deep learning network to predict meal quality.
It was found that variations in the quality of fish and pork could be predicted with 90.6 and 97.9 percent accuracy, respectively. Precision will unavoidably surpass 99 percent as associated technology develops. 
perceive frame img
Sensor Network - IOT
understand frame img
Machine Learning
act frame img
Optimize
Interested in the same or similar project?
Submit a request and get a free project evaluation.