breadcrumbs icon
Aide à la décision

Prédire

Modèle de prévision et d'impact des catastrophes et des urgences

Une décision de crédit plus juste et plus personnalisée
Pour:
Prestataires de paiement et de crédit
Objectif:
Expérience client améliorée
Aller au-delà des modèles linéaires généralisés : une stratégie de tarification sophistiquée intégrant les prix des concurrents
Pour:
Tarification client Actuaires
Objectif:
Augmenter les revenus
Triage basé sur l'apprentissage automatique pour déterminer les patients de faible gravité qui peuvent être accélérés jusqu'à l'admission aux urgences en raison de leur courte durée de sortie
Pour:
Services d'urgence dans les hôpitaux.
Objectif:
Amélioration de l'efficacité des employés
Modèle de prévision et d'impact des catastrophes et des urgences
Pour:
Professionnels de la gestion des catastrophes au niveau national, Experts en adaptation au changement climatique, Agences gouvernementales, Communautés à risque
Renseignements automatisés sur l'enrichissement des menaces dans la cybersécurité
Objectif:
Améliorer l'efficacité des opérations
Apprentissage par renforcement en profondeur pour une recommandation de traitement personnalisée
Pour:
Cliniciens qui prescrivent des traitements de longue durée et modulables
Objectif:
Amélioration de l'efficacité des employés
Application de l'apprentissage automatique pour prédire le risque de nouvelles infections à l'hôpital pour les patients
Pour:
Hôpitaux
Objectif:
Amélioration de l'expérience client, anticipation des risques
Gestion - Intelligence de marché
Pour:
Chefs de produit et marketeurs.
But:
Augmenter le nombre d'utilisateurs actifs pour un service de streaming musical en identifiant le comportement des clients à forte valeur ajoutée.
Objectif:
Amélioration de l'expérience client, augmentation des revenus
Prévisions météorologiques dans l'agriculture
Pour:
Les agriculteurs
Objectif:
Anticiper les risques, améliorer l'efficacité des opérations
L'IA pour la prévention des pertes des clients des services de télécommunication
Pour:
Entreprises de télécommunications
Objectif:
Expérience client améliorée
Fabrication et usines - Maintenance prédictive
Pour:
Exploitation, R&D
But:
Éviter les arrêts non planifiés dans la fabrication en utilisant l'apprentissage automatique pour prédire les états de défaillance des équipements.
Objectif:
Anticiper les risques, améliorer l'efficacité des opérations
Modèle de prévision et d'impact des catastrophes et des urgences
Pour:
Professionnels de la gestion des catastrophes au niveau national, experts en adaptation au changement climatique, agences gouvernementales, communautés à risque.

Modèle de prévision et d'impact des catastrophes et des urgences

Pour:
Professionnels de la gestion des catastrophes au niveau national, Experts en adaptation au changement climatique, Agences gouvernementales, Communautés à risque
Problème adressé
Chaque fois qu'une catastrophe naturelle comme une inondation ou une vague de chaleur se produit, les avertissements et autres informations relatives aux risques peuvent être imprécis ou obsolètes. La plupart des informations relatives aux risques flottent actuellement à un niveau macro, couvrant des centaines de mètres carrés, et sont trop complexes pour être comprises par les personnes à risque. Il était nécessaire de localiser les données sur les risques au niveau du quartier pour soutenir le développement de la résilience à long terme dans les communautés les plus à risque. Leur vaste expérience de réaction à de nombreuses urgences et catastrophes sur le terrain doit être automatisée, mise à l'échelle et codée à l'aide d'une solution.
Description
Un modèle de pointe combinant des capacités d'IA et d'apprentissage automatique est développé pour planifier et réagir aux catastrophes avec plus de succès. Ce modèle prévoit des informations de risque hyper-locales pour les alertes précoces et l'intervention à l'aide de données historiques et de photos satellites. Le principe de base de l'approche est que la toiture d'une maison peut servir de substitut à son statut socio-économique. Ainsi, les capacités d'adaptation et de récupération d'une famille résidant dans une grande maison en béton et d'une famille vivant dans une maison temporaire en tôle seraient différentes. Les effets des destructions provoquées par une catastrophe sont sensiblement différents pour chacune de ces habitations lorsque deux d'entre elles sont présentes dans la même région. L'épine dorsale de ce système d'IA est la cartographie de ces données de matériau de toit sur l'imagerie satellite et d'autres facteurs spatiaux. La solution génère des données de risque hyper-localisées qui peuvent être utilisées par diverses parties prenantes dans la réponse aux catastrophes. Ces parties prenantes comprennent des experts en adaptation au changement climatique, des agences gouvernementales et des communautés à risque à l'échelle nationale. Il fournit aux gens des instructions précises sur la façon de protéger leurs maisons, leurs animaux de compagnie, leurs moyens de subsistance et leurs biens. L'évolutivité de la solution est un autre atout. Il peut répondre à une variété de catastrophes, y compris les tremblements de terre, les vagues de chaleur et les inondations.
perceive frame img
Voir - Image
understand frame img
Apprentissage automatique
act frame img
Aide à la décision - Prédire / Prévoir
Intéressé par le même projet ou un projet similaire ?
Soumettez une demande et obtenez une évaluation gratuite de votre projet.